Disulfide Bonds Enable Accelerated Protein Evolution
نویسندگان
چکیده
منابع مشابه
Enhancing protein stability with extended disulfide bonds.
Disulfide bonds play an important role in protein folding and stability. However, the cross-linking of sites within proteins by cysteine disulfides has significant distance and dihedral angle constraints. Here we report the genetic encoding of noncanonical amino acids containing long side-chain thiols that are readily incorporated into both bacterial and mammalian proteins in good yields and wi...
متن کاملDisulfide bonds as switches for protein function.
The prevailing view is that disulfide bonds have been added during evolution to enhance the stability of proteins that function in a fluctuating cellular environment. However, recent evidence indicates that disulfide bonds can be more than inert structural motifs. The function of some secreted soluble proteins and cell-surface receptors is controlled by cleavage of one or more of their disulfid...
متن کاملAntibody scFv fragments without disulfide bonds made by molecular evolution.
We generated stable and functional cysteine-free antibody single-chain fragments (scFv) lacking the conserved disulfide bonds in both VH and VL. This was achieved by molecular evolution, starting from the scFv fragment of the levan binding antibody ABPC48, which is naturally missing one of the conserved cysteine residues, by using DNA shuffling and phage display. Several of the selected sequenc...
متن کاملStability constraints and protein evolution: the role of chain length, composition and disulfide bonds.
Stability of the native state is an essential requirement in protein evolution and design. Here we investigated the interplay between chain length and stability constraints using a simple model of protein folding and a statistical study of the Protein Data Bank. We distinguish two types of stability of the native state: with respect to the unfolded state (unfolding stability) and with respect t...
متن کاملAn engineered pathway for the formation of protein disulfide bonds.
We have engineered a pathway for the formation of disulfide bonds. By imposing evolutionary pressure, we isolated mutations that changed thioredoxin, which is a monomeric disulfide reductase, into a [2Fe-2S] bridged dimer capable of catalyzing O2-dependent sulfhydryl oxidation in vitro. Expression of the mutant protein in Escherichia coli with oxidizing cytoplasm and secretion via the Tat pathw...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Molecular Biology and Evolution
سال: 2017
ISSN: 0737-4038,1537-1719
DOI: 10.1093/molbev/msx135